Документ подписан простой эМИНИСТЕРІСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельцеФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

ФИО: Гнатюк Маркемеранты высшего образовательное учреждение высшего образования Должность: Первый поростор КИЙ ГОСУДАР СТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ Дата подписания: 11.07.2022 09:51:21

Уникальный программный ключ:

8873f497f100e798ae8c92c0d38e105c818d5410

Физика

рабочая программа дисциплины (модуля)

Направление подготовки 08.03.01 Строительство Направленность (профиль) Промышленное и гражданское строительство

Квалификация бакалавр

Форма обучения очная

Общая трудоемкость **63ET**

Виды контроля в семестрах:

экзамены 2 зачеты 1

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	1 (1.1)		2 (1.2)		Итого		
Недель	18	3,5	17,7				
Вид занятий	УП	РΠ	УП	РΠ	УП	РП	
Лекции	18	18	18	18	36	36	
Лабораторные	18	18	18	18	36	36	
Практические			18	18	18	18	
Конт. ч. на аттест.	0,25	0,25	0,4	0,4	0,65	0,65	
Конт. ч. на аттест. в период ЭС			2,35	2,35	2,35	2,35	
Итого ауд.	36	36	54	54	90	90	
Контактная работа	36,25	36,25	56,75	56,75	93	93	
Сам. работа	35,75	35,75	62,6	62,6	98,35	98,35	
Часы на контроль			24,65	24,65	24,65	24,65	
Итого	72	72	144	144	216	216	

Программу составил(и):

доцент, Вилякина Евгения Васильевна;ст. преподаватель, Зайчикова Татьяна Васильевна

Рабочая программа дисциплины

Физика

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 08.03.01 Строительство (приказ Минобрнауки России от 31.05.2017 г. № 481)

составлена на основании учебного плана: 08.03.01-21-3-Сб.plm.plx

Направление подготовки 08.03.01 Строительство Направленность (профиль) Промышленное и гражданское строительство

Рабочая программа одобрена на заседании кафедры

Естественные науки

Зав. кафедрой д.ф.-м.н., д.т.н, профессор Волов В.Т.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Цель освоения дисциплины «Физика» является формирование у обучающихся общепрофессиональной компетенции в области естественнонаучного мировоззрения; научного мышления; целостного представления о физических законах окружающего мира в их единстве и взаимосвязи; навыков применения положений фундаментальной физики при решении конкретных предметно-профильных задач; теоретической и практической базы для успешного освоения ими специальных дисциплин.

1.2 Задачи дисциплины:

- освоение обучающимися знаний об основных физических явлениях и процессах, основных физических величинах и физических константах, основных физических законах и границах их применимости, фундаментальных физических экспериментах и их роли в развитии науки, назначении и принципах действия важнейших физических приборов:
- приобретение обучающимися умений объяснить основные наблюдаемые природные и техногенные явления и эффекты на базе законов классической и современной физики;
- приобретение обучающимися умений и навыков использования методики физических измерений и обработки экспериментальных данных, использования методов физического моделирования для решения конкретных естественнонаучных и технических задач;
- приобретение обучающимися навыков эксплуатации основных приборов и оборудования современной физической лаборатории, обработки и интерпретирования результатов эксперимента.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Цикл (раздел) OП: Б1.O.11

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- ОПК-1 Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата
- ОПК-1.2 Применяет основные понятия и законы естественных наук для решения предметно-профильных задач
- ОПК-1.3 Применяет естественнонаучные методы теоретического и экспериментального исследования объектов, процессов, явлений; проводит эксперименты по заданной методике и анализирует результаты

В результате освоения дисциплины (модуля) обучающийся должен

3.1 Знать:

- 3.1.1 основные понятия и законы классической и современной физики и их роль в решении предметно-профильных задач
- 3.1.2 методы теоретического и экспериментального исследования физических объектов, процессов и явлений; методику проведения и обработки результатов физического эксперимента.

3.2 Уметь:

- 3.2.1 использовать основные понятия и законы классической и современной физики для решения предметно- профильных
- 3.2.2 применять методы теоретического и экспериментального исследования физических объектов, процессов и явлений; проводить физические эксперименты по заданной методике и обрабатывать их результаты.

3.3 Владеть:

- 3.3.1 навыками применения основных понятий и законов классической и современной физики для решения предметно-профильных задач;
- 3.3.2 навыками применения методов теоретического и экспериментального исследования физических объектов, процессов и явлений; навыками проведения физических экспериментов по заданной методике и обработки их результатов.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код занятия	Наименование разделов и тем /вид занятия/		Часов	Примечание
	Раздел 1. КИНЕМАТИКА И ДИНАМИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ.			
1.1	Предмет и методы механики. Векторное и координатное описание и основные кинематические характеристики и движения материальной точки и тела. Вращательное движение материальной точки и тела. Первый закон Ньютона. Понятие инертной массы тела. Второй закон Ньютона и понятие силы. Третий закон Ньютона. Виды сил. Неинерциальные системы отсчета. /Лек/		6	
1.2	Определение плотности твердого тела правильной геометрической формы. /Лаб/	1	2	

1.3	Изучение законов поступательного движения с помощью машины Атвуда. /Лаб/	1	2	
	Раздел 2. ЗАКОНЫ СОХРАНЕНИЯ. ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА			
2.1	Законы изменения и сохранения импульса, энергии и момента импульса механической системы. Основной закон вращательного движения твердого тела вокруг неподвижной оси. Момент инерции. Вычисление моментов инерции однородных симметричных тел. Теорема Штейнера и ее применение. Кинетическая энергия вращательного движения твердого тела. /Лек/	1	6	
2.2	Изучение динамики вращательного движения с помощью маятника Обербека. /Лаб/	1	2	
2.3	Проверка законов сохранения импульса и энергии при соударении тел /Лаб/	1	2	
2.4	Маятник Максвелла. Определение момента инерции тел и проверка закона сохранения энергии. /Лаб/	1	2	
2.5	Определение ускорения свободного падения при помощи математического маятника. /Лаб/	1	2	
2.6	Определение модуля сдвига с помощью пружинного маятника. /Лаб/	1	2	
	Раздел 3. ЭЛЕМЕНТЫ ТЕРМОДИНАМИКИ И СТАТИСТИЧЕСКОЙ ФИЗИКИ			
3.1	Основные определения и понятия термодинамики. Нулевое начало термодинамики и понятие температуры. Первое начало термодинамики. Второе начало термодинамики. Тепловые машины и цикл Карно и теорема Карно. Основные положения кинетической теории идеального газа. Барометрическая формула. Распределения Максвелла и Больцмана. /Лек/	1	6	
3.2	Определение коэффициента вязкости жидкости по методу Стокса. /Лаб/	1	2	
3.3	Определение отношения теплоемкостей газа методом адиабатического расширения. /Лаб/	1	2	
	Раздел 4. ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ ТОК.			
4.1	Электрический заряд и электростатическое поле. Напряженность и потенциал электростатического поля. Теорема Гаусса и ее применение. Диэлектрики и их поляризация. Теорема Гаусса для вектора электрического смещения. Проводники в электростатическом поле. Электроемкость уединенного проводника. Конденсаторы. Энергия системы зарядов и электрического поля. Условия существования постоянного электрического тока. Сила и плотность тока. Электродвижущая сила и напряжение. Закон Ома для однородного и неоднородного участка цепи. Работа и мощность тока. Закон Джоуля-Ленца. /Лек/	2	2	
4.2	Электростатика. Постоянный ток /Пр/	2	2	
4.3	Исследование электростатических полей. (Изучение закона Ома.) /Лаб/	2	2	
	Раздел 5. ПОСТОЯННОЕ МАГНИТНОЕ ПОЛЕ		† †	
5.1	Магнитная индукция. Закон Био-Савара-Лапласа, магнитное поле движущегося заряда, сила Лоренца, закон Ампера. Теорема о циркуляции для вектора магнитной индукции и ее применение. Магнитное поле в веществе. Теорема о циркуляции для вектора напряженности магнитного поля. Диамагнетики, парамагнетики, ферромагнетики. /Лек/	2	2	
5.2	Постоянное магнитное поле /Пр/	2	2	
5.3	Определение отношения заряда электрона к его массе методом магнетрона. (Определение горизонтальной составляющей индукции магнитного поля Земли) /Лаб/	2	2	
5.4	Определение работы выхода электронов из металла. /Лаб/	2	2	
	Раздел 6. ЭЛЕКТРОДИНАМИКА		1 1	
6.1	Закон электромагнитной индукции. Правило Ленца. Явление самоиндукции. Индуктивность. Взаимная индукция. Ток смещения. Теорема о циркуляции магнитного поля в случае присутствия переменных электрических полей. Уравнения Максвелла. /Лек/	2	2	

6.2	Электродинамика /Пр/	2	2	
6.3	Изучение явления взаимной индукции.(Снятие кривой намагничивания и петли гистерезиса с помощью осциллографа.) /Лаб/	2	2	
	Раздел 7. ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ			
7.1	Гармонические колебания и их характеристики. Формула сложения гармонических колебаний. Примеры колебательных систем. Затухающие колебания. Вынужденные колебания и резонанс. Свободные незатухающие, затухающие и вынужденные электрические колебания в колебательном контуре. Переменный ток. Работа и мощность в цепи переменного тока. Волны в упругих средах. Электромагнитные волны. Энергия и импульс электромагнитных волн. /Лек/	2	2	
7.2	Колебания и волны /Пр/	2	2	
7.3	Исследование затухающих колебаний в колебательном контуре /Лаб/	2	2	
	Раздел 8. ГЕОМЕТРИЧЕСКАЯ И ВОЛНОВАЯ ОПТИКА.			
8.1	Понятие светового луча. Закон прямолинейного распространения световых лучей в однородных средах. Закон отражения. Закон преломления. Тонкая линза. Когерентность и монохроматичность световых волн. Интерференция световых волн. Опыт Юнга. Интерференция света в тонких пленках и пластинках. Определение дифракции. Принцип Гюйгенса-Френеля. Метод зон Френеля и его применение. Дисперсия световых волн. Электронная теория дисперсии света. Естественный и поляризованный свет. Поляризация света при отражении и преломлении. Поляризация при прохождении света через анизотропные кристаллы. Закон Малюса. /Лек/	2	4	
8.2	Геометрическая и волновая оптика /Пр/	2	4	
8.3	Интерференция света. Опыт Юнга. (Измерение длинны световой волны с помощью дифракционной решетки). (Определение показателя преломления стекла с помощью микроскопа). /Лаб/	2	2	
8.4	Проверка закона Малюса. (Определение коэффициента поглощения прозрачных тел). (Определение угла полной поляризации). /Лаб/ Раздел 9. КВАНТОВАЯ ФИЗИКА	2	2	
9.1	Тепловое излучение и его характеристики. Законы теплового излучения. Фотоэффект. Единство корпускулярных и волновых свойств электромагнитного излучения. Гипотеза де Бройля. Свойства волн де Бройля. Волновая функция и ее вероятностная интерпретация. Общее уравнение Шредингера. Стационарное уравнение Шредингера. Движение в квантовой частицы в потенциальной яме. Атом водорода в квантовой физике. /Лек/	2	4	
9.2	Квантовая оптика /Пр/	2	4	
9.3	Определение температурной зависимости интенсивности излучения нити лампы накаливания. (Изучение законов теплового излучения с помощью яркостного пирометра.) /Лаб/	2	2	
9.4	Фотоэффект. (Снятие вольтамперной, люксамперной и спектральной характеристик фотоэлемента и определение работы выхода электрона). /Лаб/	2	2	
	Раздел 10. ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА			
10.1	Радиоактивное излучение и его виды: -распад, -излучение, -излучение. Ядерные реакции и их основные типы. Классы элементарных частиц и виды их взаимодействий. /Лек/	2	2	
10.2	Элементы физики атомного ядра /Пр/	2	2	
10.3	Принцип неразличимости тождественных частиц. Спин и другие квантовые числа элементарных. Частицы и античастицы. Современная классификация элементарных частиц. /Ср/ Раздел 11. САМОСТОЯТЕЛЬНАЯ РАБОТА	2	9	
11.1	Подготовка к лекциям /Ср/	1	9	
11.1	110ді отовка к локцилім / Срі	1		

11.2	Подготовка к лабораторным работам /Ср/	1	18	
11.3	Подготовка к зачету /Ср/	1	8,75	
11.4	Подготовка к лекциям /Ср/	2	9	
11.5	Подготовка к практическим работам /Ср/	2	18	
11.6	Подготовка к лабораторным работам /Ср/	2	18	
11.7	Выполнение контрольной работы /Ср/	2	8,6	
	Раздел 12. КОНТАКТНЫЕ ЧАСЫ НА АТТЕСТАЦИЮ			
12.1	Зачет /КА/	1	0,25	
12.2	Контрольная работа /КА/	2	0,4	
12.3	Консультация перед экзаменом /КЭ/	2	2	
12.4	Экзамен /КЭ/	2	0,35	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оценочные материалы для проведения промежуточной аттестации обучающихся приведены в приложении к рабочей программе дисциплины.

Формы и виды текущего контроля по дисциплине (модулю), виды заданий, критерии их оценивания, распределение баллов по видам текущего контроля разрабатываются преподавателем дисциплины с учетом ее специфики и доводятся до сведения обучающихся на первом учебном занятии.

Текущий контроль успеваемости осуществляется преподавателем дисциплины (модуля), как правило, с использованием ЭИОС или путем проверки письменных работ, предусмотренных рабочими программами дисциплин в рамках контактной работы и самостоятельной работы обучающихся. Для фиксирования результатов текущего контроля может использоваться ЭИОС.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)								
	6.1. Рекомендуемая литература 6.1.1. Основная литература							
	Авторы, составители	Заглавие	Издательс тво, год	Эл. адрес				
Л1.1	Савельев И.В.	Курс общей физики. Т. 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц: учебное пособие	Санкт- Петербург : Лань, 2018	https://e.lanbook.com/book/106893				
Л1.2	Савельев И. В.	Курс общей физики. Т. 2. Электричество и магнетизм. Волны. Оптика: учебное пособие	Санкт- Петербург : Лань, 2019	https://e.lanbook.com/book/113945				
Л1.3	Савельев И.В.	Курс общей физики. Т. 1. Механика. Молекулярная физика: учебное пособие	Санкт- Петербург : Лань, 2019	https://e.lanbook.com/book/113944				
	6.1.2. Дополнительная литература							
	Авторы, составители	Заглавие	Издательс тво, год	Эл. адрес				
Л2.1	Шапкарин И.П., Кирьянов А.П., Кубарев С.И., Разинова С.М.	Общая физика. Сборник задач	Москва: КноРус, 2019	http://www.book.ru/book/933565				

6.2 Информационные технологии, используемые при осуществлении образовательного процесса по дисциплине (модулю) 6.2.1 Перечень лицензионного и свободно распространяемого программного обеспечения 6.2.1.1 Microsoft Office Professional Plus 2016 6.2.2 Перечень профессиональных баз данных и информационных справочных систем 6.2.2.1 Математическая база данных zbMATH: zbmath.org 6.2.2.2 Международная профессиональная база данных «SpringerMaterials»: https://materials.springer.com/ 6.2.2.3 Информационная справочная система "Гарант" http://www.garant.ru 6.2.2.4 Информационная справочная система "КонсультантПлюс" http://www.consultant.ru 6.2.2.5 Естественнонаучный образовательный портал: http://www.edu.ru/ 7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) Учебные аудитории для проведения занятий лекционного типа, укомплектованные специализированной мебелью и техническими средствами обучения: мультимедийное оборудование для предоставления учебной информации большой аудитории и/или звукоусиливающее оборудование (стационарное или переносное). Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные специализированной мебелью и техническими средствами обучения: мультимедийное оборудование и/или звукоусиливающее оборудование (стационарное или переносное). Помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду университета. Помещения для хранения и профилактического обслуживания учебного оборудования. Лаборатории, оснащенные специальным лабораторным оборудованием: Лаборатория механики, включающая: блок электронный ФМ1/1, машина Атвуда ФМ11, маятник Максвелла ФМ12, универсальный маятник ФМ13,маятник Обербека ФМ14, модуль Юнга и модуль сдвига ФМ 19, соударение шаров ФМ17; Лаборатория электричества и магнетизма, включающая: стенды ТКО электричества и магнетизма, в том числе осциллографы С1-94, генераторы сигналов низкочастотные Г3-118, источники питания, магазины сопротивлений, набор модулей ФПЭ; Лаборатория оптики, включающая комплект оптического оборудования РМС, в том числе: базы оптической скамьи, полупроводниковые лазеры с юстировочным модулем, фотоприемники, набор линз,

экраны с масштабной сеткой; автотрансформатор однофазный ЛАТР-2,5; комплект фоллий.