Документ подписан простой э**МИДИЛЕТЕРИСТВ**О ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце**ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА**

ФИО: Гнатюк Маркирория высшего образования должность: Первый продеждение высшего образования

Должность: Первый моркемокий государ СТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ Дата подписания: 11.07.2022 09:51:21

Уникальный программный ключ:

8873f497f100e798ae8c92c0d38e105c818d5410

Высокопроизводительные вычислительные системы

рабочая программа дисциплины (модуля)

Направление подготовки Направление 27.06.01 Управление в технических системах Профиль - Информационно-измерительные и управляющие системы

Направленность (профиль) Информационно-измерительные и управляющие системы

Квалификация Исследователь. Преподаватель-исследователь.

Форма обучения очная

Общая трудоемкость 2 ЗЕТ

Виды контроля в семестрах:

зачеты 5

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	5 (3	3.1)	Итого	
Недель	4			
Вид занятий	УП	РΠ	УП	РΠ
Лекции	12	12	12	12
Практические	12	12	12	12
Контактные часы на аттестацию	0,25	0,25	0,25	0,25
Итого ауд.	24	24	24	24
Контактная работа	24,25	24,25	24,25	24,25
Сам. работа	47,75	47,75	47,75	47,75
Итого	72	72	72	72

Программу составил(и):

к.т.н., Доцент, Засов В.А.

Рабочая программа дисциплины

Высокопроизводительные вычислительные системы

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 27.06.01 УПРАВЛЕНИЕ В ТЕХНИЧЕСКИХ СИСТЕМАХ (уровень подготовки кадров высшей квалификации). (приказ Минобрнауки России от 30.07.2014 г. № 892)

составлена на основании учебного плана: УП_27.06.01_УТС_ИИУС_2020_ОФО.plx

Направление подготовки Направление 27.06.01 Управление в технических системах Профиль - Информационно-измерительные и управляющие системы Направленность (профиль) Информационно-измерительные и управляющие системы

утвержден учёным советом вуза (протокол от 25.02.2020 № 59).

Рабочая программа одобрена на заседании кафедры

Мехатроника, автоматизация и управление на транспорте

Зав. выпускающей кафедрой доцент, к.т.н., доцент Авсиевич А.В.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Целью освоения дисциплины «Высокопроизводительные вычислительные системы » является получение аспирантами теоретических и практических навыков по применению высокопроизводительных вычислительных систем различного назначения, методам эффективной организации вычислительных процессов, разработке алгоритмов и технологии параллельного программирования при распределенных вычислениях

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

 Цикл (раздел) ОП:
 Б1.В.ДВ.03.01

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОПК-5: владением научно-предметной областью знаний

Знать:

общие принципы и закономерности построения параллельных информационно-измерительных и управляющих систем научно методический аппарат и методологические основы изучения в области параллельных информационно- измерительных проблематику научно –предметной области знаний о параллельных информационно-измерительных и управляющих Уметь:

проектировать методы измерения и управления объектами на основе параллельных информационных технологий применять новые методы измерения и управления объектами на основе параллельных информационных технологий самостоятельно приобретать с помощью ИКТ и использовать в практической деятельности новые знания и умения, в том Владеть:

лгоритмами расщепления вычислительных процессов на параллельные ветви

методами описания параллельных вычислительных процессов

методами оценки характеристик параллельных управляющих и вычислительных систем

ПК-2: способность разрабатывать информационно-измерительные и управляющие системы для решения задач измерений и автоматизации

Знать:

методы адаптивного управления и контроля сложных объектов на основе параллельных информационных технологий новые методы управления и мониторинга сложных объектов на основе параллельных информационных технологий знания основные тенденции развития информатики и математической теории алгоритмов измерения

Уметь:

применять современные технологии конструирования информационно-измерительных и управляющих систем для сложных применять новые информационно-измерительные и управляющие системы для сложных объектов

разрабатывать новые информационно-измерительные и управляющие системы для сложных объектов

Владеть:

применять современные технологии конструирования информационно-измерительных и управляющих систем для сложных применять новые информационно-измерительные и управляющие системы для сложных объектов разрабатывать новые информационно-измерительные и управляющие системы для сложных объектов

В результате освоения дисциплины (модуля) обучающийся должен

3.1 Знать:

3.1.1 теоретические основы организации параллельных вычислительных систем и процессов в автоматизированных системах обработки информации и управления универсального и специального назначения, основные направления развития архитектуры параллельных вычислительных систем, принципы построения и структуры основных блоков современных параллельных вычислительных систем.

3.2 Уметь:

3.2.1 анализировать архитектуру различных параллельных вычислительных систем, используемых в автоматизированных системах управления, осуществлять выбор наиболее рациональных вариантов организации высокопроизводительных вычислительных систем для решения прикладных задач обработки информации и управления.

3.3 Владеть:

8.1 современными технологиями тестирования показателей аппаратных и программных средств параллельных вычислительных систем, методами анализа и оценки характеристик параллельных и распределенных вычислительных систем. технологией работы с современными автоматизированными системами на базе компьютеров, контроллеров, специализированных функциональных модулей, опытом применения инструментальных средств тестирования и отладки параллельных вычислительных систем различного назначения, методикой оценки эффективности применения параллельных вычислительных систем различной архитектуры в конкретных задачах обработки информации и управления.

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (М	ОДУЛЯ)		
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Примечание
	Раздел 1. Лекционные занятия			
1.1	Параллелизм как основа высокопроизводительных вычислений. Классификация параллельных вычислительных систем. Уровни параллелизма в вычислительных системах и метрики параллельных вычислений. Предельные оценки ускорения вычислений /Лек/	5	2	
1.2	Конвейеризация вычислений и направления развития этого метода. Показатели эффективности конвейеров /Лек/	5	2	
1.3	Мультипроцессорные вычислительные системы. Виды мультипроцессорных систем: SMP, ASMP, UMA, NUMA. Алгоритмы арбитража в ВС /Лек/		2	
1.4	Мультикомпьютерные вычислительные системы. Виды мультикомпьютерных систем: MPP COW. Топология и средства коммуникации мультикомпьютерных ВС /Лек/	5	2	
1.5	Мультипрограммные вычислительные системы. Планирование и диспетчеризация процессов и потоков. Алгоритмы планирования /Лек/	5	2	
1.6	Организация синхронизации процессов и потоков в вычислительных системах. Обнаружение и устранение взаимных блокировок процессов и потоков /Лек/	5	2	
	Раздел 2. Практические занятия			
2.1	Схемы арбитража, сравнительный анализ и устройство арбитров /Пр/	5	2	
2.2	Графические модели планировщиков процессов, реализующие различные режимы планирования для периодических вычислительных процессов	5	2	
2.3	Графические модели планировщиков процессов, реализующие различные режимы планирования для непериодических вычислительных процессов /Пр/	5	2	
2.4	Изучение синхронизации процессов с помощью блокирующих переменных, семафоров и мьютексов /Пр/	5	2	
2.5	Алгоритмы и программы обнаружение взаимных блокировок при наличии одного экземпляра ресурса для каждого типа ресурсов /Пр/	5	2	
2.6	Алгоритмы и программы обнаружение взаимных блокировок при наличии нескольких экземпляров для каждого типа ресурсов /Пр/	5	2	
	Раздел 3. Самостоятельная работа			
3.1	Графическое описание параллельных вычислительных процессов /Ср/	5	2	
3.2	Коммуникационная сложность параллельных алгоритмов /Ср/	5	2	
3.3	Принципы разработки параллельных алгоритмов /Ср/	5	2	
3.4	Моделирование параллельных программ /Ср/	5	2	
3.5	Языки и библиотеки параллельного программирования /Ср/	5	3	
3.6	Оценка максимально достижимого параллелизма /Ср/	5	4	
3.7	Подготовка к лекциям /Ср/	5	12	
3.8	Подготовка к практическим занятиям /Ср/	5	12	
3.9	Подготовка к зачету /Ср/	5	8,75	
	Раздел 4. Контактные часы на аттестацию			
4.1	Зачет /КчА/	5	0,25	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Структура и содержание ФОС

Приложения

5.2. Показатели и критерии оценивания компетенций

Критерии формирования оценок по выполнению практических работ

«Зачтено»» – ставится за работу, выполненную полностью без ошибок и недочетов в соответствии с заданием, выданным для выполнения практической работы.

«Не зачтено»» - ставится за работу, если обучающийся правильно выполнил менее 2/3 всей работы, использовал при выполнении работы устаревшую нормативную базу, в качестве исходных данных выступили данные учебника, а не реальной организации.

Критерии формирования оценок по выполнению тестовых заданий

«Отлично» (5 баллов) — получают обучающиеся с правильным количеством ответов на тестовые вопросы — 100 - 90% от общего объёма заданных тестовых вопросов.

«Хорошо» (4 балла) – получают обучающиеся с правильным количеством ответов на тестовые вопросы – 89-70% от

общего объёма заданных тестовых вопросов.

«Удовлетворительно» (3 балла) – получают обучающиеся с правильным количеством ответов на тестовые вопросы – 69 – 60% от общего объёма заданных тестовых вопросов.

«Неудовлетворительно» (0 баллов) - получают обучающиеся с правильным количеством ответов на тестовые вопросы –59% и менее от общего объёма заданных тестовых вопросов.

Критерии формирования оценок по зачету

«Зачтено»» - обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности. «Не зачтено» - выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной опенки

5.3. Типовые контрольные задания для оценки знаний, умений, навыков и (или) опыта деятельности

Перечень вопросов к зачету

- 1. Показатели, характеристики и критерии эффективности ВС. Способы построения критериев эффективности ВС.
- 2. Технико-экономическая эффективность функционирования ВС.
- 3. Основные направления развития архитектуры процессоров ВС.
- 4. Конвейеризация вычислений. Показатели эффективности конвейеров.
- 5. Методы решения проблемы условного перехода. Суперконвейерные процессоры.
- 6. Основные направления развития архитектуры процессоров ВС. Процессоры с полным набором команд (CISC).
- 7. Процессоры с сокращенным набором команд (RISC). Особенности архитектуры RISC процессоров. Типы серийно производимых RISC процессоров
- 8. Основные направления развития архитектуры процессоров ВС. Суперскалярные процессоры. Особенности реализации суперскалярных процессоров. Аппаратная поддержка суперскалярных операций.
- 9. Процессоры со сверхдлинным командным словом (VLIW архитектурой).
- 10. Эмпирические законы Мура, Х. Гроша, кривая обучаемости. Уровни параллелизма и метрики параллельных вычислений.
- 11. Предельные оценки ускорения вычислений. Первый, второй и третий законы Дж. Амдала.
- 12. Закон Густавсона Барсиса.
- 13. Топологии ВС. Метрика сетевых топологий. Функции маршругизации данных.
- 14. Статические топологии: линейная, кольцевая, звездообразная, древовидная и др.
- 15. Динамические топологии ВС. ВС с программируемой структурой.
- 16. Векторные и матричные ВС. Понятие вектора и размещения данных в памяти.
- 17. Структура векторного процессора. Обработка длинных векторов и матриц. Массив процессоров.
- 18. Ассоциативные ВС. ВС с систолической архитектурой. Классификация систолических структур. Топология систолических структур. Процессорные элементы систолических структур.
- 19. Симметричные (SMP) и асимметричные (ASMP) ВС. Архитектура SMP и ASMP систем.
- 20. ВС с массовым параллелизмом (МРР). Кластерные ВС. Архитектура кластерных ВС.
- 21. ВС с управлением вычислений от потока данных. Вычислительная модель потоковой обработки. Статические и динамические потоковые ВС.
- 22. Проблемно-ориентированные и специализированные ВС. Показатели специализации и их количественная оценка. Определение критерия степени специализации МС и выбор его рационального значения.
- Программируемые контроллеры, программируемые логические интегральные схемы, сигнальные процессоры.
 Особенности их архитектуры и организации вычислений.
- Перспективные методы обработки данных. Проблема отображения структуры алгоритма решаемого класса задач на структуры ВС.
- 25. ВС с обработкой по принципу волнового фронта.
- 26. Нейрокомпьютеры и искусственные нейронные сети.
- 27. Организация памяти в ВС. Модели архитектур совместно используемой памяти.
- 28. Мультипроцессорный и мультипрограммный способы организации вычислительных процессов. Мультипроцессорные (многопроцессорные) вычислительные системы. Многопроцессорный режим работы, его достоинства и недостатки.
- 29. Определение арбитража. Виды централизованного и распределенного арбитража.
- 30. Мультипрограммные системы. Способы реализации мультипрограммного режима. Мультипрограммирование в системах пакетной обработки, в системах разделения времени, системах реального времени.
- 31. Управление задачами в ВС. Планирование и диспетчеризация процессов потоков.
- 32. Стратегии планирования и дисциплины диспетчеризации. Граф состояния процессов и потоков.
- 33. Принципы планирования процессов и потоков. Классификация алгоритмов планирования.
- 34. Вытесняющие и не вытесняющие алгоритмы планирования ОС. Приоритетные и бесприоритетные алгоритмы планирования.
- 35. Алгоритмы планирования основанные на квантовании. Обоснование выбора величины квантов времени. Задание квантов времени в мультипрограммных ОС и управление их величиной.
- 36. Алгоритмы планирования основанные на приоритетах. Понятие приоритета и очереди процессов. Абсолютные и относительные приоритеты.
- 37. Смешанные алгоритмы планирования. Алгоритмы планирования в ОС реального времени. Планирование на основе предельных начальных или конечных сроков решения задач.

- 38. Частотно-монотонное планирование в ОС. Законы Лью Лейланда.
- 39. Алгоритмы планирования в ОС Windows 2000 и Windows XP. Учет квантов и управление их величиной. Динамическое повышение приоритета.
- 40. Синхронизация процессов и потоков в ОС. Эффект гонок. Необходимость синхронизации. Критические секции и критические данные.
- 41. Средства организации взаимоисключений. Маскировка прерываний системного таймера. Метод блокирующих переменных. Достоинства и недостатки метода блокирующих переменных. Практическая реализация метода блокирующих переменных.
- 42. Средства организации взаимоисключений. Семафоры Дейкстры. Мьютексы. Способы использования семафоров при проектировании мультипрограммных систем.
- 43. Взаимодействующие процессы. Средства коммуникации процессов и основы их логической организации. Принципы организации обмена информацией между процессами.
- 44. Почтовые ящики, конвейеры и очереди сообщений. Сигналы и средства обработки сигналов. Понятие событийного программирования.
- 45. Взаимные блокировки и тупики. Условия возникновения тупиков. Основные направления борьбы с тупиками: игнорирование взаимных блокировок, предотвращение взаимных блокировок.
- 46. Основные направления борьбы с тупиками: обнаружение тупиков, восстановление после взаимных блокировок.
- 47. Формальные модели для изучения проблемы взаимных блокировок.
- 48. Архитектура и принципы построения памяти современной вычислительной системы.
- 49. Классификация вычислительных систем (ВС). Классификации Флина, Хокни, Фенга, Хендлера, Шнайдера. Взаимосвязь классификаций ВС.

Тестирование

Тестирование по дисциплине проводится с использованием ресурсов электронной образовательной среды «Moodle» (режим доступа: http://do.samgups.ru/moodle/)

5.4. Процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Описание процедуры оценивания «Защита отчета по практическим работам»

Оценивание итогов практической работы проводится преподавателем, ведущим практические работы.

По результатам проверки отчета по практической работе обучающийся допускается к его защите при условии соблюдения перечисленных условий:

- выполнены все задания;
- отсутствуют ошибки;
- оформлено в соответствии с требованиями.

В том случае, если содержание отчета не отвечает предъявляемым требованиям, то он возвращается автору на доработку. Обучающийся должен переделать отчет с учетом замечаний. Если сомнения вызывают отдельные аспекты отчета, то в этом случае они рассматриваются во время устной защиты.

Защита отчета по практической работе представляет собой устный публичный отчет обучающегося о результатах выполнения, ответы на вопросы преподавателя.

Ответ обучающегося оценивается преподавателем в соответствии с критериями, описанными в пункте 5.2.

Описание процедуры оценивания «Тестирование». Тестирование по дисциплине проводится с использованием ресурсов электронной образовательной среды «Moodle» (режим доступа: http://do.samgups.ru/moodle/). Количество тестовых заданий и время задается системой. Во время проведения тестирования обучающиеся могут пользоваться программой дисциплины, справочной литературой, калькулятором. Результат каждого обучающегося оценивается в соответствии с универсальной шкалой, приведенной в пункте 5.2.

Описание процедуры оценивания «Зачет»

Зачет проводиться в форме устного ответа на вопросы билета.

При проведении зачета в форме устного ответа на вопросы билета обучающемуся предоставляется 20 минут на подготовку. Опрос обучающегося по билету не должен превышать 0,25 часа. Ответ обучающегося оценивается в соответствии с критериями, описанными в пункте 5.2.

Во время проведения зачета обучающиеся могут пользоваться программой дисциплины, справочной литературой, калькулятором. Результат каждого обучающегося оценивается в соответствии с универсальной шкалой, приведенной в пункте 5.2.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)				
6.1. Основная литература				
	Авторы, составители	Заглавие	Издательс	Эл. адрес
			тво, год	

	Авторы, составители	Заглавие	Издательс	Эл. адрес	
Л1.1	Засов В. А.	Архитектура распределенных автоматизированных систем: конспект лекций	тво, гол Самара: СамГУПС , 2011	https://e.lanbook.com/b ook/130364	
Л1.2	Орлов С. А., Цилькер Б. Я.	Организация ЭВМ и систем: учебник для вузов	Санкт- Петербург : Питер, 2011		
Л1.3	Засов В. А.	Основы архитектуры и организации ЭВМ: учебное пособие для вузов	Самара: СамГУПС , 2013		
Л1.4	С. А. Орлов, Б. Я. Цилькер	Организация ЭВМ и систем [Электронный ресурс]: учебник для вузов: стандарт третьего поколения. 3-е изд.: учебник для вузов	Санкт- Петербург : Питер, ЭБС Айбукс, 2014	http://ibooks.ru/reading .php? short=1&isbn=978-5- 496-01145-7	
		6.2. Дополнительная литература	<u>I</u>		
	Авторы, составители	Заглавие	Издательс тво, гол	Эл. адрес	
Л2.1	2 77 6 2 2	Высокопроизводительные вычислительные системы на железнодорожном транспорте: учебник для студ. вузов ж д. трансп.	М.: УМЦ по образов. на жд. трансп., 2010		
6.2 И	 Нформационные техн	ологии, используемые при осуществлении образовате	 льного проц	есса по дисциплине	
	621 Hanaware	(модулю)	ммного обос	пономия	
6211	6.2.1 Перечень. Программный пакет Г	пицензионного и свободно распространяемого програ [АРАЛАБ	ммного ооес	псчения	
	* *	Система виртуальных машин VMware"			
		профессиональных баз данных и информационных	справочных	систем	
6.2.2.1	2.2.1 Национальный Открытый Университет «ИНТУИТ» www.intuit.ru				
6.2.2.2	Лаборатория параллельных информационных технологий www.parallel.ru				
6.2.2.3					
	7. МАТЕРИА	ЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛ	ІИНЫ (МОД	ЦУЛЯ)	
7.1	доступ к электронно-бинформационно-образ	рия для проведения практических занятий оборудованны иблиотечным системам (через ресурсы библиотеки CaмI вовательной среде moodle и к информационно-телекомму ой работы обучающегося.	ГУПС), к элег	ктронной	
7.2	2.				